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complicated trajectories. Yet, if the total external
force acting on the system is zero, the centre of
mass moves with a constant velocity, i.e., moves
uniformly in a straight line like a free particle.

The vector Eq. (7.18a) is equivalent to three
scalar equations,

P
x
 = c

1
, P

y
 = c

2
 and P

z
 = c

3
(7.18 b)

Here P
x
, P

y
 and P

z
 are the components of the

total linear momentum vector P along the x–, y–

and z–axes respectively; c
1
, c

2
 and c

3
 are

constants.

(a) (b)

Fig. 7.13 (a) A heavy nucleus radium (Ra) splits into

a lighter nucleus radon (Rn) and an alpha

particle (nucleus of helium atom). The CM

of the system is in uniform motion.

(b) The same spliting of the heavy nucleus

radium (Ra) with the centre of mass at

rest. The two product particles fly back

to back.

As an example, let us consider the
radioactive decay of a moving unstable particle,
like the nucleus of radium. A radium nucleus
disintegrates into a nucleus of radon and an
alpha particle. The forces leading to the decay
are internal to the system and the external
forces on the system are negligible. So the total
linear momentum of the system is the same
before and after decay. The two particles
produced in the decay, the radon nucleus and
the alpha particle, move in different directions
in such a way that their centre of mass moves
along the same path along which the original
decaying radium nucleus was moving
[Fig. 7.13(a)].

If we observe the decay from the frame of
reference in which the centre of mass is at rest,
the motion of the particles involved in the decay
looks particularly simple; the product particles

move back to back with their centre of mass
remaining at rest as shown in Fig.7.13 (b).

In many problems on the system of
particles, as in the above radioactive decay
problem, it is convenient to work in the centre
of mass frame rather than in the laboratory
frame of reference.

In astronomy, binary (double) stars is a
common occurrence. If there are no external
forces, the centre of mass of a double star
moves like a free particle, as shown in Fig.7.14
(a). The trajectories of the two stars of equal
mass are also shown in the figure; they look
complicated. If we go to the centre of mass
frame, then we find that there the two stars
are moving in a circle, about the centre of
mass, which is at rest. Note that the position
of the stars have to be diametrically opposite
to each other [Fig. 7.14(b)]. Thus in our frame
of reference, the trajectories of the stars are a
combination of (i) uniform motion in a straight
line of the centre of mass and (ii) circular
orbits of the stars about the centre of mass.

As can be seen from the two examples,
separating the motion of different parts of a
system into motion of the centre of mass and
motion about the centre of mass is a very
useful technique that helps in understanding
the motion of the system.

7.5  VECTOR PRODUCT OF TWO VECTORS

We are already familiar with vectors and their
use in physics. In chapter 6 (Work, Energy,
Power) we defined the scalar product of two
vectors. An important physical quantity, work,
is defined as a scalar product of two vector
quantities, force and displacement.

(a) (b)

Fig. 7.14 (a) Trajectories of two stars, S
1
 (dotted

line) and S
2
 (solid line) forming a

binary system with their centre of

mass C in uniform motion.

(b) The same binary system, with the

centre of mass C at rest.
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We shall now define another product of two
vectors. This product is a vector. Two important
quantities in the study of rotational motion,
namely, moment of a force and angular
momentum, are defined as vector products.

Definition of Vector Product

A vector product of two vectors a and b is a
vector c such that

(i) magnitude of c = c sinab θ=  where a and b

are magnitudes of  a and b and θ is the
angle between the two vectors.

(ii) c is perpendicular to the plane containing
a and b.

(iii) if we take a right handed screw with its head
lying in the plane of  a and b and the screw
perpendicular to this plane, and if we turn
the head in the direction from  a to b, then
the tip of the screw advances in the direction
of c. This right handed screw rule is
illustrated in Fig. 7.15a.
Alternately, if one curls up the fingers of

right hand around a line perpendicular to the
plane of the vectors  a and b and if the fingers
are curled up in the direction from a to b, then
the stretched thumb points in the direction of
c, as shown in Fig. 7.15b.

(a) (b)

Fig. 7.15 (a) Rule of the right handed screw for

defining the direction of the vector

product of two vectors.

                (b) Rule of the right hand for defining the

direction of the vector product.

A simpler version of the right hand rule is
the following : Open up your right hand palm
and curl the fingers pointing from  a to b. Your
stretched thumb points in the direction of c.

It should be remembered that there are two
angles between any two vectors  a and b . In
Fig. 7.15 (a) or (b) they correspond to θ (as

shown) and (3600– θ). While applying either of

the above rules, the rotation should be taken
through the smaller angle (<1800) between  a
and b. It is θ here.

Because of the cross (×) used to denote the
vector product, it is also referred to as cross product.

• Note that scalar product of two vectors is

commutative as said earlier, a.b = b.a
The vector product, however, is not

commutative, i.e. a × b ≠ b × a
The magnitude of both a × b and b × a is the

same ( sinab θ ); also, both of them are
perpendicular to the plane of  a and b. But the
rotation of the right-handed screw in case of
a × b  is from  a to b, whereas in case of  b × a it
is from b to a. This means the two vectors are
in opposite directions. We have

× = − ×a b b a

• Another interesting property of a vector

product is its behaviour under reflection.
Under reflection (i.e. on taking the plane
mirror image) we have

and ,x x y y z z→ − → − → − . As a result all

the components of a vector change sign and

thus ,a a→ − b b→ − . What happens to

a × b under reflection?

a × b ( ) ( )→ − × − = ×a b a b

Thus, a × b does not change sign under
reflection.

• Both scalar and vector products are

distributive with respect to vector addition.
Thus,

.( ) . .+ = +a b c a b a c

( )× + = × + ×a b c a b a c

• We may write c = a × b in the component

form. For this we first need to obtain some
elementary cross products:

(i) a × a = 0 (0 is a null vector, i.e. a vector
with zero magnitude)

This follows since magnitude of a × a  is

2 sin0 0a ° = .
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u

From this follow the results

 (i) ˆ ˆ ˆ ˆ ˆ ˆ, ,× = × = × =i i 0 j j 0 k k 0

(ii) ˆ ˆ ˆ× =i j k

Note that the magnitude of ˆ ˆ×i j  is sin900

or 1, since î  and ĵ  both have unit

magnitude and the angle between them is 900.

Thus, ˆ ˆ×i j  is a unit vector. A unit vector

perpendicular to the plane of î  and ĵ  and

related to them by the right hand screw rule is

k̂ . Hence, the above result. You may verify

similarly,

ˆ ˆ ˆ ˆ ˆ ˆand× = × =j k i k i j

From the rule for commutation of the cross
product, it follows:

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,× = − × = − × = −j i k k j i i k j

Note if ˆ ˆ ˆ, ,i j k occur cyclically in the above

vector product relation, the vector product is

positive. If ˆ ˆ ˆ, ,i j k  do not occur in cyclic order,

the vector product is negative.
Now,

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )x y z x y za a a b b b× = + + × + +a b i j k i j k

ˆ ˆ ˆ ˆ ˆ ˆ
x y x z y x y z z x z ya b a b a b a b a b a b= − − + + −k j k i j i

= + +( )� ( )� ( ) �a b a b a b a b a b a by z z y z x x z x y y x− − −i j k

We have used the elementary cross products
in obtaining the above relation. The expression
for a × b  can be put in a determinant form
which is easy to remember.

ˆ ˆ ˆ

x y z

x y z

a a a

b b b

× =
i j k

a b

Example 7.4  Find the scalar and vector

products of two vectors. a = (3î  – 4ĵ  + 5k̂ )
and b = (– 2î  + ĵ  – 3k̂ )

Answer

ˆ ˆ ˆ ˆ ˆ ˆ(3 4 5 ) ( 2 3 )

6 4 15

25

= − + − + −
= − − −
= −

a b i j k i j ki i

ˆ ˆ ˆ

ˆ ˆ ˆ3 4 5 7 5

2 1 3

× = − = − −
− −

i j k

a b i j k

Note  ˆ ˆ ˆ7 5× = − + +b a i j k   t

7.6 ANGULAR VELOCITY AND ITS
RELATION WITH LINEAR VELOCITY

In this section we shall study what is angular
velocity and its role in rotational motion. We
have seen that every particle of a rotating body
moves in a circle. The linear velocity of the
particle is related to the angular velocity. The
relation between these two quantities involves
a vector product which we learnt about in the
last section.

Let us go back to Fig. 7.4. As said above, in
rotational motion of a rigid body about a fixed
axis, every particle of the body moves in a circle,

Fig. 7.16 Rotation about a fixed axis. (A particle (P)

of the rigid body rotating about the fixed

(z-) axis moves in a circle with centre (C)

on the axis.)

which lies in a plane perpendicular to the axis
and has its centre on the axis. In Fig. 7.16 we
redraw Fig. 7.4, showing a typical particle (at a
point P) of the rigid body rotating about a fixed
axis (taken as the z-axis). The particle describes
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a circle with a centre C on the axis. The radius
of the circle is r, the perpendicular distance of
the point P from the axis. We also show the
linear velocity vector v of the particle at P. It is
along the tangent at P to the circle.

Let P′ be the position of the particle after an
interval of time ∆t (Fig. 7.16). The angle PCP′
describes the angular displacement ∆θ of the
particle in time ∆t. The average angular velocity
of the particle over the interval  ∆t is ∆θ/∆t. As
∆t tends to zero (i.e. takes smaller and smaller
values), the ratio ∆θ/∆t approaches a limit which
is the instantaneous angular velocity dθ/dt of
the particle at the position P. We denote the
instantaneous angular velocity by  ω (the
Greek letter omega). We know from our study
of circular motion that the magnitude of linear
velocity  v of a particle moving in a circle is
related to the angular velocity of the particle ω
by the simple relation rυ ω= , where r is the
radius of the circle.

We observe that at any given instant the
relation  v rω=  applies to  all particles of the
rigid body. Thus for a particle at a perpendicular
distance r

i
  from the fixed axis, the linear velocity

at a given instant v
i
 is given by

i iv rω= (7.19)

The index i runs from 1 to n, where n is the
total number of particles of the body.

For particles on the axis, 0=r , and hence

v = ω r = 0. Thus, particles on the axis are
stationary. This verifies that the axis is fixed.

Note that we use the same angular velocity
ω for all the particles. We therefore, refer to  ωωωωω
as the angular velocity of the whole body.

We have characterised pure translation of

a body by all parts of the body having the same
velocity at any instant of time. Similarly, we

may characterise pure rotation by all parts of

the body having the same angular velocity at
any instant of time. Note that this

characterisation of the rotation of a rigid body

about a fixed axis is just another way of saying

as in Sec. 7.1 that each particle of the body moves

in a circle, which lies in a plane perpendicular

to the axis and has the centre on the axis.
In our discussion so far the angular velocity

appears to be a scalar. In fact, it is a vector. We
shall not justify this fact, but we shall accept
it. For rotation about a fixed axis, the angular
velocity vector lies along the axis of rotation,

and points out in the direction in which a right
handed screw would advance, if the head of the
screw is rotated with the body. (See Fig. 7.17a).

The magnitude of this vector is d dtω θ=
referred as above.

Fig. 7.17 (a) If the head of a right handed screw

rotates with the body, the screw

advances in the direction of the angular

velocity ωωωωω. If the sense (clockwise or

anticlockwise) of rotation of the body

changes, so does the direction of ωωωωω.

Fig. 7.17 (b) The angular velocity vector ωωωωω is

directed along the fixed axis as shown.

The linear velocity of the particle at P

is v = ωωωωω × r. It is  perpendicular to both

ω ω ω ω ω and r and is  directed along the

tangent to the circle described by the

particle.

We shall now look at what the vector product
ωωωωω × r corresponds to. Refer to Fig. 7.17(b) which
is a part of Fig. 7.16 reproduced to show the
path of the particle P. The figure shows the
vector ωωωωω directed along the fixed (z–) axis and

also the position vector  r = OP  of the particle

at P of the rigid body with respect to the origin
O. Note that the origin is chosen to be on the
axis of rotation.
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Now ωωωωω × r = ωωωωω × OP = ωωωωω × (OC + CP)

But ωωωωω × OC = 0 0 0 0 0 as ω ω ω ω ω is along OC

Hence ωωωωω × r = ωωωωω × CP

The vector ωωωωω × CP is perpendicular to ωωωωω, i.e.

to the z-axis and also to CP, the radius of the

circle described by the particle at P. It is

therefore, along the tangent to the circle at P.

Also, the magnitude of  ωωωωω × CP is ω (CP) since

ωωωωω and CP are perpendicular to each other. We

shall denote CP by ⊥r  and not by r, as we did

earlier.

Thus, ωωωωω × r is a vector of magnitude ωr⊥

and is along the tangent to the circle described
by the particle at P. The linear velocity vector v
at P has the same magnitude and direction.
Thus,

v = ω ω ω ω ω × r (7.20)

In fact, the relation, Eq. (7.20), holds good
even for rotation of a rigid body with one point
fixed, such as the rotation of the top [Fig. 7.6(a)].
In this case r represents the position vector of
the particle with respect to the fixed point taken
as the origin.

We note that for rotation about a fixed
axis, the direction of the vector ωωωωω does not
change with time. Its magnitude may,
however, change from instant to instant. For
the more general rotation, both the
magnitude and the direction of ω ω ω ω ω may change
from instant to instant.

7.6.1 Angular acceleration

You may have noticed that we are developing

the study of rotational motion along the lines

of the study of translational motion with which

we are already familiar. Analogous to the kinetic

variables of linear displacement (s) and velocity

(v) in translational motion, we have angular

displacement (θθθθθ) and angular velocity (ωωωωω) in

rotational motion. It is then natural to define

in rotational motion the concept of angular

acceleration in analogy with linear acceleration

defined as the time rate of change of velocity in

translational motion. We define angular

acceleration ααααα as the time rate of change of

angular velocity; Thus,

d

dt
=

ωωωω
αααα (7.21)

If the axis of rotation is fixed, the direction
of ω ω ω ω ω and hence, that of ααααα is fixed. In this case
the vector equation reduces to a scalar equation

d

dt

ωα = (7.22)

7.7  TORQUE AND ANGULAR MOMENTUM

In this section, we shall acquaint ourselves with
two physical quantities (torque and angular
momentum) which are defined as vector products
of two vectors. These as we shall see, are
especially important in the discussion of motion
of systems of particles, particularly rigid bodies.

7.7.1 Moment of force (Torque)

We have learnt that the motion of a rigid body,

in general, is a combination of rotation and

translation. If the body is fixed at a point or along

a line, it has only rotational motion. We know

that force is needed to change the translational

state of a body, i.e. to produce linear

acceleration. We may then ask, what is the

analogue of force in the case of rotational

motion? To look into the question in a concrete

situation let us take the example of opening or

closing of a door. A door is a rigid body which

can rotate about a fixed vertical axis passing

through the hinges. What makes the door

rotate? It is clear that unless a force is applied

the door does not rotate. But any force does not

do the job. A force applied to the hinge line

cannot produce any rotation at all, whereas a

force of given magnitude applied at right angles

to the door at its outer edge is most effective in

producing rotation. It is not the force alone, but

how and where the force is applied is important

in rotational motion.

The rotational analogue of force in linear

motion is moment of force. It is also referred to

as torque or couple. (We shall use the words

moment of force and torque interchangeably.)

We shall first define the moment of force for the

special case of a single particle. Later on we

shall extend the concept to systems of particles

including rigid bodies. We shall also relate it to

a change in the state of rotational motion, i.e. is

angular acceleration of a rigid body.
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